524Uploads
223k+Views
120k+Downloads
Design, engineering and technology
Aerodynamics timeline
In this lesson, students will learn about the development of aerodynamics through history.
It’s an engaging starter activity where students will be introduced to the concepts behind aerodynamic design, including how simple shapes can be tested in a wind tunnel and through water.
Learners will explore the basic principles of aerodynamics by looking at familiar products (such as cars) that have been designed for speed. As part of the lesson, students will examine how these products have evolved and how aerodynamic principles have influenced these developments. They’ll be asked to identify common features across different products and understand how these features all contribute to speed.
This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in science or design and technology (DT).
Activity: Learning about the history of aerodynamics
This activity will ask students to research images of a selection of cars and aeroplanes from the 20th and 21st centuries (without looking at exactly when they were made). Students will then try to arrange these images in chronological order and explain their decision-making process based on the aerodynamics of each vehicle.
Download our activity overview for a detailed lesson plan for teaching students about the history of aerodynamics.
The engineering context
From making the fastest Formula One car, to designing more fuel-efficient aeroplanes, aerodynamics is a fundamental skill for mechanical engineers. By exploring the evolution of cars and airplanes, students will develop an appreciation for how advancements in aerodynamics technology have shaped the look and design of many cars and aeroplanes over the years.
Suggested learning outcomes
Students will be able to identify trends in the development of aeroplanes and cars. They will gain an understanding of what influenced these developments and be able to explain the role of aerodynamics as part of this.
Download our classroom lesson plan and presentation for free.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your highlights with us @IETeducation.
3D Printing poster
Secondary classroom poster looking at the 3D printing process and how it can be used to make everyday objects.
Download here or order a full set for free from the IET Education website.
Working drawings poster
Secondary classroom poster where students can find out more about working drawings and how they are created.
Download the single poster here or order a full set of posters for free from the IET Education website.
Celebrating women engineers
Secondary classroom poster looking at how women are involved in the engineering industry.
CAD design project
Producing a CAD drawing of a design idea
This activity involves using CAD to design a modular product that could be made in batches using the casting process. Students will be tasked with creating a mould that could be used to make this product. The aim of this activity is to design a shape that can be tessellated, have a practical application, and would look aesthetically pleasing as a modular set of products that can lock together.
This project is part of a series of resources designed to challenge the students by requiring them to apply the knowledge and understanding of engineering materials through a ‘batch’ production experience. This activity should be followed by Investigating batch production . Also included in the series are Engineering design processes and Investigating cast products.
It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in engineering and design and technology (D&T).
Activity: Producing a CAD drawing of a design idea
In this activity students will design a modular product that could be made in batches using the casting process and create a mould that could be used to make this product.
Students will be asked to design a set of identical products that interlock (are modular). The products must be suitable for batch production made by casting and be made from PoP (plaster of Paris).
They’ll need to produce sketches of some design ideas and then choose one for modelling using CAD software. Students will next create a card model to test the interlocking feature and aesthetics of their design. After this they can make any necessary adjustments to their CAD drawing, and use use CAD/CAM to create an MDF mould.
The engineering context
Engineers will use CAD design as part of the process of making products. Items that have been designed this way are also ideal for batch production as they can be easily replicated. This links to industrial practices such as quality control, standardisation, and casting manufacture.
Suggested learning outcomes
This activity will teach students to analyse a design brief as well as generate ideas for a tessellated product that is suitable for batch manufacture. Students will also learn how to produce a CAD drawing of a design idea.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your highlights with us @IETeducation
Calculate energy use at home
Calculating the energy used by different electrical appliances and devices within the home
In this activity learners will calculate the energy usage of different electrical appliances. They will first calculate the power consumption using P = I V, then use the results of these calculations to work out how much energy each uses in kilowatt hours (kWh).
This activity could be used as a main lesson activity to teach about electrical power and energy, and how each are calculated. It could also be used as part of a wider scheme of learning focussing on electricity and the National Grid or as an exercise to use mathematical skills in a practical context.
This is one of a series of resources developed in association with the National Grid ESO, to allow learners to develop their knowledge and skills in Design & Technology and Engineering. This resource focusses on calculating the energy usage of different appliances and considering how this could be reduced. National Grid ESO ensure that Great Britain has the essential energy it needs by ensuring supply meets demand every second of every day.
This activity is designed to take between 40-70 minutes.
Tools/resources required
Writing implements (pens or pencils)
Calculators
The engineering context
Engineers have a moral and ethical responsibility to ensure that their work is sustainable and that they do not negatively impact the environment. This includes reducing energy consumption wherever possible. As such, it is important that all engineers understand how products and systems are powered and how much energy they use.
Power engineering is a very important field which focusses on how energy is generated, transmitted and used by homes and businesses. There are lots of well-paid and rewarding careers available in this area.
Suggested learning outcomes
By the end of this free resource students will be able to calculate the power consumption of different appliances using P = I V; calculate the energy consumption of different appliances; and be able to show calculated data as part of a table.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation.
Design a car of the future
Design investigations to test reaction times and ability to concentrate whilst driving
In this activity students will design and carry out investigations to test reaction times and ability to concentrate. They will then try their test on older people and use their results to design a car of the future.
Students will first be asked to discuss the opinion that road accidents are more likely to be caused by younger drivers. Make sure the students realise that this is an opinion and is not backed up with evidence. They could be asked how this opinion could be proved or disproved.
Many different personal attributes can impact road safety, including a person’s vision, ability to concentrate, reaction times and mobility. The car of the future should be designed to help people overcome these issues.
Students will carry out some tests in the classroom to give a reflection of how safe they would be as a driver. Students will work in groups of around 3-4 to plan and carry out their tests. They will gather data and state what it shows. Graphs can be drawn if there is time.
For homework, students can repeat their experiment at home with older members of their family.
In the following lesson, ask students to share their results with the rest of the group and discuss as a class what their results show. Are reaction times quicker in older or younger people? Which age group is less likely to get distracted?
Tools/resources required
Class access to computers with internet connection and headphones
Paper/pens
Rulers
Projector
Whiteboard
The engineering context
Understanding basic safety concepts is essential for engineers in the automotive industry.
Suggested learning outcomes
By the end of this activity students will be able to plan an investigation, deciding what measurements to take and what equipment to use, they will be able to choose how to present results and they will be able to use data to inform design.
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Humans vs. robots
Consider ethical and moral issues around new technology
This engaging activity allows students to consider the social, ethical and moral issues associated with the development of new technology. The activity offers strong opportunities for cross-curricular work with PSHE, PSE, PSD.
This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within science and design and technology (DT).
Activity: Consider ethical and moral issues around new technology
Students will be divided into groups and given a scenario: the creation of the world’s first entirely autonomous robot surgeon. Some groups, representing the engineers, scientists, and doctors who designed the robot, will argue for the continuation of the project. Other groups, representing patients’ groups and doctors’ unions, will argue against further development due to perceived risks. Using a newspaper article and worksheet as guides, students will formulate robust arguments for their assigned viewpoints. They’ll then pair up and debate the issue, striving to reach a mutually agreed way forward.
The engineering context
This activity demonstrates how engineers must grapple with not only the technical challenges of designing new technology but also its societal implications. It highlights the importance of considering varying viewpoints and ethical concerns when developing new technologies.
Suggested learning outcomes
Through this activity, students will gain a deep understanding of what remote surgery entails and the social, ethical, and moral implications of such technological advances. They’ll also learn to appreciate that different groups may have varying perspectives on scientific and technological progress. By engaging in structured debates, students will enhance their analytical skills, learn to articulate their viewpoints persuasively, and develop the ability to negotiate and compromise.
Download our activity sheet for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including film clips!), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Please do share your highlights with us @IETeducation
Understanding ergonomics and anthropometrics
Measuring sizes of hands and presenting data
Designers must consider how people will interact with their products and systems. The use of ergonomics and anthropometric data allows them to make sure their products are comfortable and efficient to use.
This resource focuses on ergonomics in GCSE DT and the use of anthropometric data.
Activity info, teachers’ notes and curriculum links
An engaging KS4 activity in which students will collect data relating to the hand sizes of different people for use in designing a shopping bag carrier. It will build knowledge and understanding of how ergonomics and anthropometric data and anthropometric measurements are gathered for use in product design.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Linking to key exam boards such as GCSE DT providers AQA and Edexcel.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Modelling pulley systems
Model and construct 3 simple pulley systems, designed to lift loads
Mechanical systems allow us to perform tasks that would otherwise be very difficult, such as pulley systems that lift objects that would otherwise be far too heavy to move. For example, cranes on building sites that move heavy materials.
This KS4 maths resource focuses on the use and application of pulley systems.
Activity info, teachers’ notes and curriculum links
An engaging activity in which students will model and construct three different examples of pulley systems designed to lift loads. It will build knowledge and understanding of how pulley systems work and their practical uses.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
The International Space Station poster
Primary classroom poster exploring the ISS.
Download the single poster or order the full set of posters for free from the IET Education website.
How to make flowcharts for programming
Write a flowchart program to meet a given design brief
Programming is an essential skill in the 21st century world. From mobile phones and tablet computers, to large ‘fly by wire’ passenger jet aircraft, our everyday lives are shaped by systems that have been programmed. These systems keep us safe, get us to work/school or allow us to communicate with our friends and family.
The work of programmers is all around us. Almost all modern electronic systems and products have been programmed to perform different tasks. Learning how to program has therefore become an essential skill for both product and systems designers.
Activity info, teachers’ notes and curriculum links
An engaging activity which enables students to understand and be able to create flowcharts. This is one of the two main methods of programming (the other being raw code/programming language).
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
You can stream and download the related films by clicking on the appropriate link in the related resources section below.
And please do share your classroom learning highlights with us @IETeducation
Create Chinese calligraphy
Learning how to write using traditional Chinese handwriting.
In this activity learners will use the theme of the Chinese and Lunar New Year to learn about and make use of Chinese calligraphy. They will learn about different types of ‘script’, what is meant by a Xuan, and how to write numbers using Chinese Regular script.
There are five major script types used today in China: seal script, clerical script, cursive script, running script and standard script. Regular script means the proper script type of Chinese writing and is used by all Chinese for government documents and printed books.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
Tools/resources required
Pencils
Paintbrush
Paint
Pot of water to clean brush
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
And please do share your learning highlights and final creations with us on social media @IETeducation
Engineering products
Look at the difference between smart and engineered materials
Our lesson plan on engineering products offers a focus on how materials have been specifically engineered to provide the necessary qualities and characteristics.
Learners will enjoy the challenge of investigating the differences between these two types of materials, understanding their properties, uses, and the process of their creation. It gives an opportunity for students to explore a range of engineered and smart materials, identifying why they are ‘fit for purpose’ and how they have been engineered to achieve their objectives.
This is one of a set of resources developed to support the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within science and design and technology (DT).
Activity: Investigating the difference between smart and engineered materials
In this activity, students will work in pairs to research a specific engineered material. They are tasked with creating a fact sheet or PowerPoint presentation that includes the following information about their chosen material: its chemical, physical and mechanical properties, what it looks like visually and at a molecular level, what it was designed to do, how it is made, what it is made from, what it is used for, and whether it has evolved from its original intended function.
These projects can be used as a wall display or be presented to the rest of the class, promoting an interactive and collaborative learning environment.
The engineering context
Smart and engineered materials form the foundation of many products and structures that we use daily. By understanding how they are made, what they are used for, and how they can be manipulated, children can gain a deeper understanding of key engineering principles.
Suggested learning outcomes
By the end of this activity, students will have a comprehensive understanding of how materials can be designed and made for specific characteristics and purposes. They will be able to identify the properties of materials required for a specific function and explore a range of engineered materials, understanding why and how they have been developed.
This activity will also enhance their research, presentation, and teamwork skills, making it a well-rounded educational experience.
Download our activity sheets for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
You can download our step-by-step classroom lesson plan instructions as well as a handout worksheet.
Please do share your highlights with us @IETeducation.
Mission to Mars - DIY challenge day
A set of printable resources and guidance notes giving teachers and technicians the basic ingredients to run their very own IET Faraday® DIY Challenge Day. This cross-curricular activity day brings science, design and technology, engineering and maths (STEM) together in an engaging way.
The context of the challenge
Humans have been exploring the Earth for many years, travelling abroad for holidays, organising explorations to the top of mountains, to the poles of the Earth and to the bottom of oceans.
What happens when this spirit of expedition is turned to the skies?
Activity info and teachers’ notes
The Mission to Mars challenge is based on the IET Faraday® Challenge Day of the same name from our 2013/14 IET Faraday® Challenge Day season.
Students are the engineer specialists recruited by ‘Make it 2 Mars’ to establish a human settlement on the planet Mars by 2023. Students will design and construct a rocket which will transport supplies via Earth orbit to the astronauts on Mars, as well as building a system to transport their rocket to the launch site for testing.
Designed for six teams of six students (36 students in total) aged 12 – 13 years (year 8, and equivalent), the challenge encourages the development of students’ problem solving, team working and communication skills. This activity day can be tailored to the needs of your school and your students by adapting the PowerPoint presentation and the editable student booklet.
What’s included?
The complete set of downloadable materials includes:
Teachers pack
A list of the practical materials needed, presenters’ notes highlighting key areas and reinforcing key themes throughout the day, some handy hints on how to deliver the day . . . plus printable Faradays currency and student certificates.
Student booklet
Available as an editable MSWord document to allow the booklet to be adapted to meets the needs of your students and your school.
Introductory PowerPoint presentation
A step-by-step guide for your students throughout the day, with supporting notes for the delivery of the presentation, including links to the related film clips.
Download the free activity sheet below!
All online resources are free to download, and the student booklet and PowerPoint presentation are fully editable, so you can tailor them to your students’ and your schools’ needs.
If you are running one of our IET Faraday® DIY Challenge Day please do share your experience with us via our feedback form and case study template here. If you are unfamiliar with how to run a IET Faraday® DIY Challenge Day have a look at our 6 start-up videos here where we take you through the days, how they should run and what they entail.
And please do share your classroom learning highlights with us @IETeducation
How to make a simple electrical circuit
In this activity pupils will assemble a simple electric circuit. This is a great way for KS2 students to develop an understanding of how electric circuits function.
This free resource could be used in KS2 as an engaging stand-alone activity to introduce circuits, as an introduction to a design and make project (such as the doorbell activity) or as an extension to add a powered element to another design and make activity (such as adding a motor to the ‘cardboard cars’ activity).
This activity will take approximately 50-60 minutes.
Tools/resources required
Projector/Whiteboard
Components:
2 x AA batteries in holder
Electric motor (e.g. 3V 13100 Rpm DC Motor)
3 lengths of wire, each 100-150 mm long (only a single length is required if a battery holder with attached wires is used)
Either: 2 metal split pin fasteners and 1 paper clip per pupil, or one switch per pupil
Sticky tape or electrical insulation tape.
If needed: wire cutters/strippers (to cut excess wire lengths)
(Potential sources for these components include Rapid online and TTS group)
Optional:
Hole punches (ideally single hole punches)
Pre-made models of the circuit, for demonstration
Electrical circuits
An electrical circuit is a group of components that are connected together, typically using wires. The wires are typically copper metal, which is highly conductive, coated with insulating plastic, to prevent electric shocks. The circuit must be continuous (i.e., have no breaks) to allow electricity to flow through the components and back to its source, such as a battery. Switches make a gap in the circuit to stop electricity flowing when they are open. The components included in an electric circuit could range from motors, light sources and buzzers to programmable integrated circuits.
The engineering context
Circuits form the basis of all electrical equipment, ranging from lighting in homes to televisions and computers.
Suggested learning outcomes
By the end of this activity students will be able to construct an electrical switch, they will understand that a complete circuit is required for electricity to flow and they will be able to construct an electrical circuit.
Download the free How to make a simple electrical circuit activity sheet!
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Spaghetti tower - strengthening structures
Making the tallest structure
The shape of a structure has a significant effect on its strength and its stiffness. A structure made from squares can be made significantly more rigid and less likely to collapse by adding reinforcement to form triangles. This principle is widely used in civil engineering when designing new bridges and buildings.
In this activity, pupils develop both their skills in using a glue gun and demonstrate their understanding of how structures can be reinforced, by making a structure from spaghetti.
In this activity, participants begin by predicting how a square structure would affect the properties of a building and for any suggestions as to how it could be made stronger. Then working in teams, pupils have 15 minutes to build a structure from spaghetti. This is a competition – the tallest structure wins.
The structure must be free-standing – that means nothing else can support it. Each team can only use 12 pieces of spaghetti – they can break some of it into smaller lengths if needed to reinforce the structure.
Once the fifteen minutes has passed, each team reviews the structures, comparing which is the tallest and identifying how each structure could have been made stronger or taller.
Activity info, teachers’ notes and curriculum links
This activity teaches transferable skills to the construction industry and beyond. This activity could be used in Key Stage 2 as a stand-alone activity, as a focused task to develop skills in the use of the glue gun, or as an introduction to a design and make project, such as the spaghetti bridges.
If the view of the teacher is that their pupils do not have sufficient maturity to use the glue guns, this activity could be carried out using spaghetti and marshmallows – an example of this is included in the additional websites.
Download the free resources!
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Nuclear energy debate: pros and cons
Role play about the advantages and disadvantages of nuclear energy
As we rely so heavily on electrical energy in our lives, it’s crucial for students to understand the processes and implications of its generation. Our role play activity will engage the whole classroom through debate, where participants will discuss the advantages and disadvantages of generating electrical energy using nuclear fuel.
This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within engineering and design and technology (DT).
Activity: Role play about the advantages and disadvantages of nuclear energy
In this activity, learners learn about nuclear energy and then assume various roles to discuss and debate a proposal to construct a new nuclear power station in their local area.
Learners will review how nuclear power is generated and then weigh its pros and cons. By executing a group role play, students will gain a deeper understanding of the topic. The activity concludes with class feedback, where learners justify their decisions, promoting reflective thinking.
Download our activity overview and presentation for a detailed lesson plan for teaching students about nuclear energy.
The engineering context
Engineering is all about problem-solving and making informed decisions. By debating the construction of a new nuclear power station, students will get a glimpse into the challenges engineers face daily. This activity will inspire them to think like engineers, weighing the pros and cons before making decisions that impact society.
Suggested learning outcomes
This activity is designed to help students grasp how electrical energy is generated from nuclear fuel and comprehend both the benefits and drawbacks of this method.
Furthermore, it encourages learners to apply their knowledge to real-world situations, enhancing their understanding of the issues surrounding electrical energy generation.
Download our activity sheets for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
You can download our classroom lesson plan and our PowerPoint presentation.
Please do share your highlights with us @IETeducation
Light power poster
Primary classroom poster enabling your students to discover more about light and how it travels.
Download the single poster here or order the full set of posters for free from the IET Education website.
User centered design poster
Secondary classroom poster highlighting the design process focusing on the needs of the user at each stage.
Download the single poster or order a full set of posters for free from the IET Education website.